The world According to de Finetti : On de Finetti ’ s Theory of Probability and its Application to Quantum Mechanics
نویسنده
چکیده
Bruno de Finetti is one of the founding fathers of the subjectivist school of probability, where probabilities are interpreted as rational degrees of belief. His work on the relation between the theorems of probability and rationality is among the corner stones of modern subjective probability theory. De Finetti maintained that rationality requires that degrees of belief be coherent, and he argued that the whole of probability theory could be derived from these coherence conditions. De Finetti’s interpretation of probability has been highly influential in science. This paper focuses on the application of this interpretation to quantum mechanics. We argue that de Finetti held that the coherence conditions of degrees of belief in events depend on their verifiability. Accordingly, the standard coherence conditions of degrees of belief that are familiar from the literature on subjective probability only apply to degrees of belief in events which could (in principle) be jointly verified; and the coherence conditions of degrees of belief in events that cannot be jointly verified are weaker. While the most obvious explanation of de Finetti’s verificationism is the influence of positivism, we argue that it could be motivated by the radical subjectivist and instrumental nature of probability in his interpretation; for as it turns out, in this interpretation it is difficult to make sense of the idea of coherent degrees of belief in, and accordingly probabilities of unverifiable events. We then consider the application of this interpretation to quantum mechanics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell’s theorem.
منابع مشابه
Unknown Quantum States: The Quantum de Finetti Representation
We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti’s classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti...
متن کاملUnknown Quantum States and Operations, a Bayesian View
The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti’s theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum s...
متن کاملA simple proof of Renner’s exponential de Finetti theorem
In quantum information theory a de Finetti theorem expresses the fact that a quantum state ρ ∈ (Cd)⊗n that is invariant under permutation of its n subsystems is close to a mixture of tensor product states. The first such result is due to de Finetti [3], who showed that any classical distribution that is infinitely exchangeable can be expressed as a convex combination of product distributions. M...
متن کاملDe Finetti Theorems for Easy Quantum Groups
We study sequences of noncommutative random variables which are invariant under “quantum transformations” coming from an orthogonal quantum group satisfying the “easiness” condition axiomatized in our previous paper. For 10 easy quantum groups, we obtain de Finetti type theorems characterizing the joint distribution of any infinite, quantum invariant sequence. In particular, we give a new and u...
متن کاملOn Quantum Estimation, Quantum Cloning and Finite Quantum de Finetti Theorems
This paper presents a series of results on the interplay between quantum estimation, cloning and finite de Finetti theorems. First, we consider the measure-and-prepare channel that uses optimal estimation to convert M copies into k approximate copies of an unknown pure state and we show that this channel is equal to a random loss of all but s particles followed by cloning from s to k copies. Wh...
متن کامل